An immune programming-based ranking function discovery approach for effective information retrieval
نویسندگان
چکیده
In this paper, we propose RankIP, the first immune programming (IP) based ranking function discovery approach. IP is a novel evolution based machine learning algorithm with the principles of immune systems, which is verified to be superior to Genetic Programming (GP) on the convergence of algorithm according to their experimental results in Musilek et al. (2006). However, such superiority of IP is mainly demonstrated for optimization problems. RankIP adapts IP to the learning to rank problem, a typical classification problem. In doing this, the solution representation, affinity function, and high-affinity antibody selection require completely different treatments. Besides, two formulae focusing on selecting best antibody for test are designed for learning to rank. Experimental results demonstrate that the proposed RankIP outperforms the state-of-the-art learningbased ranking methods significantly in terms of P@n;MAP and NDCG@n. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Ranking Function Discovery by Genetic Programming for Robust Retrieval
Ranking functions are instrumental for the success of an information retrieval (search engine) system. However nearly all existing ranking functions are manually designed based on experience, observations and probabilistic theories. This paper tested a novel ranking function discovery technique proposed in [Fan 2003a, Fan2003b] – ARRANGER (Automatic geneRation of RANking functions by GEnetic pR...
متن کاملAn Effective Path-aware Approach for Keyword Search over Data Graphs
Abstract—Keyword Search is known as a user-friendly alternative for structured languages to retrieve information from graph-structured data. Efficient retrieving of relevant answers to a keyword query and effective ranking of these answers according to their relevance are two main challenges in the keyword search over graph-structured data. In this paper, a novel scoring function is proposed, w...
متن کاملA generic ranking function discovery framework by genetic programming for information retrieval
Ranking functions play a substantial role in the performance of information retrieval (IR) systems and search engines. Although there are many ranking functions available in the IR literature, various empirical evaluation studies show that ranking functions do not perform consistently well across different contexts (queries, collections, users). Moreover, it is often difficult and very expensiv...
متن کاملGenetic Programming-Based Discovery of Ranking Functions for Effective Web Search
Web search engines have become an integral part of the daily life of a knowledge worker, who depends on these search engines to retrieve relevant information from the Web or from the company’s vast document databases. Current search engines are very fast in terms of their response time to a user query. But their usefulness to the user in terms of retrieval performance leaves a lot to be desired...
متن کاملA new approach to fuzzy quantities ordering based on distance method and its applications for solving fuzzy linear programming
Many ranking methods have been proposed so far. However, there is yet no method that can always give a satisfactory solution to every situation; some are counterintuitive, not discriminating; some use only the local information of fuzzy values; some produce different ranking for the same situation. For overcoming the above problems, we propose a new method for ranking fuzzy quantities based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 37 شماره
صفحات -
تاریخ انتشار 2010